Methods of acclimatisation

Since I had the tests out and I also had some spare test tubes, I decided to test the water which the fish were coming from:

  • KH: 6 ° (107 ppm)
  • GH: 16 (286 ppm)
  • ammonia: 0 ppm
  • nitrite: 0 ppm
  • nitrate: 20-80 ppm
  • pH: 8.0

As can be seen from the above results, the difference between that and the aquarium water is quite significant! If I was to move the fish straight over, they would probably get quite a shock from the difference in hardness, so I would need to acclimatise them first.

My preferred method of acclimatisation is often referred to as “drip acclimatisation”. The process is simple, although time consuming:

  1. I start by gently tipping the bag with the fish and LFS water into a bucket (8-10 litres for small fish, larger for larger fish), have something ready for covering the bucket as many fish are able to jump
  2. If the fish has been in transit for any significant period of time, or you have any other reason to suspect that there is ammonia in the water, add a product which temporarily converts ammonia into ammonium
  3. Add some décor and/or plants to make the fish feel more secure and relaxed
  4. Add a heater and airstone if needed, for example, if the air temperature is cooler than the aquarium water or if the fish have been in transit for a long time
  5. Next, set up an airline with a knot tied in it so that the flow can be controlled, to drip 4-10 drops of aquarium water into the LFS water per second for a 9 litre bucket (depending on how sensitive the fish are and the difference in water parameters: the smaller the difference, the faster the flow), for larger buckets, a faster flow should be used, for example, 10-20 drops per second for a 20 litre bucket so it takes approximately the same amount of time to fill
  6. Once the bucket is full, which usually takes 3-6 hours, remove the airline
  7. Transfer the fish from the bucket, into the display aquarium using a net, trying to minimise water transfer by not even dipping the net in the aquarium
  8. Disconnect all equipment that was used
  9. Throw away the water in the bucket (I water house plants with it)
  10. Disinfect all equipment used and throw away plants which were used during acclimatisation
  11. Top up the aquarium with dechlorinated water

The more common method involves floating the bag in the aquarium for a short period of time and occasionally adding large volumes of water to it: this does not particularly help the fish become accustomed to the new water and can be as harmful as not acclimatising at all. From what I have seen, this is one of the most common reasons, after ammonia poisoning, for deaths in new fish.

Hydrocotyle sp. ‘Japan’ overgrowing

Taking photos of plants for saleThe Hydrocotyle sp. ‘Japan’ has been growing very fast, so I decided to trim a few strands back and sell them to recoup the original cost of the plants. I prefer to show photos of the actual plants I am selling, so the buyer knows exactly what they are going to receive. I usually lay out the plants of a white towel, sometimes placing a ruler next to them for size comparison, then take the photo from above. As it can take a few days for the plants to sell, I normally keep them separated at this point, inside a tub of water, which is usually placed in a bright place.

Hydrocotyle sp. ‘Japan' for saleI picked out three strands which are about 18-20 cm, two which are around 8-10 cm long and one which is slightly shorter. I am asking for GBP 2.50 for the plants posted in UK, or EUR 3.00 posted to anywhere else in the EU. (Reply if you’re interested!)

Importance of acclimatisation

Fish are osmoregulators, which means that they regulate the water levels inside their bodies by means of a process called osmoregulation to keep the salt concentrations inside their body constant, regardless of the fluctuations of salt outside their bodies. The process differs in freshwater fish and marine fish because of the environment, I will write about the freshwater process as that is what concerns this aquarium.

Some species of fish, such as some Poecilia spp., are able to tolerate a very wide range of salt concentrations in water, all the way from fresh to marine water: these fish are called euryhaline. But most (common freshwater aquarium) fish are not able to tolerate changes in salinity: they are referred to as stenohaline.

Water hardness is made up of metal ions and carbonates, both of which form salts, so harder water contains more salts than soft water. This means that it takes more work for fish to maintain body salt concentrations in softer water and less in harder water: keeping hard water fish in soft water can affect their health as they would constantly be putting more effort than is usual into maintaining their bodily functions.

Most fish have a blood salt concentration of 9 ppt, while fresh water has a salt concentration of under 0.5 ppt, so freshwater fish tend to try to maintain salt concentrations in their blood at higher levels than the water is at, which is achieved by ion intake through food and gills and by excretion of excess water by means of a dilute urine.

Most fish are not able to instantly adapt between different water hardnesses, which is why moving a fish from one water type to another quickly can result in death or serious injury. To avoid problems, it is important to acclimatise the fish to the new water parameters over a long period of time and with only small changes in the water parameters. In theory, if the start and end water hardness, pH and temperature are same or very similar, acclimatisation can be skipped.

Long term exposure to water types the fish are not suitable for cause increased susceptibility to diseases, because of the extra work that hard water fish have to do in soft water and because many diseases do not do as well in soft water, so soft water fish are not always as able to resist them.